Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nevzat Karadayı, ${ }^{\text {a }}$ * Emine Akyüz, ${ }^{\text {b }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Erbil Ağar, ${ }^{\text {c }}$ Selami Sașmaz ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey, and ${ }^{\mathrm{c}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nevzatk@omu.edu.tr

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.098$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3-Dihydro-4-phenyl-1,4-benzoxazine-6,7-dicarbonitrile

The title molecule, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, contains a benzene ring fused to an oxazine ring and one phenyl ring bound to the N atom. The two aromatic rings are not coplanar because of steric hindrance, the shortest $\mathrm{H} \cdots \mathrm{H}$ contact being 2.45 (4) \AA. The dihedral angles between these two rings is $52.28(1)^{\circ}$.

Comment

Phthalocyanine compounds are used in electrochromism, batteries, photodynamic therapy, semiconductive materials, liquid crystal and non-linear optics (Moser \& Thomas, 1983; Leznoff \& Lever, 1996). The title compound, (I), was isolated as a reaction precursor during the preparation of a phthalocyanine. Compound (I) has a very similar structure to previously reported compounds (Öztürk et al., 1999, 2000; Işık et al., 1999; Karadayı et al., 2003).

(I)

The molecular structure of (I) is shown in Fig. 1. In the structure, $\mathrm{C} 10-\mathrm{C} 15-\mathrm{N} 2=179.2(2)^{\circ}$ and $\mathrm{C} 9-\mathrm{C} 16-\mathrm{N} 3=$ $177.6(2)^{\circ}$, i.e. near to the value of 180°, since atoms C15 and C 16 are in the $s p$ state. The $\mathrm{N} 1-\mathrm{C} 7$ bond distance is 1.378 (2) \AA and agrees with literature values (Vergeer et al., 1999; Chen et al., 2003; Olmstead et al., 2003). The bond distances and angles for (I) are listed in Table 1. The C1-C6 and $\mathrm{C} 7-\mathrm{C} 12$ rings are not coplanar, the dihedral angle between the least-squares planes through them being $55.28(1)^{\circ}$. This lack of coplanarity is caused by steric hindrance, as shown by the $\mathrm{H} 1 \cdots \mathrm{H} 8=2.45$ (4) A contact and the asymmetry of the two exocyclic angles at N1 (Table 1). For

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-labelling scheme.

Received 17 February 2004 Accepted 18 February 2004 Online 28 February 2004
the oxazine ring, the Cremer \& Pople (1975) total puckering amplitude $Q_{T}=0.468$ (3) Å. According to Duax et al. (1976), the conformation is a half-chair, with a local pseudo-twofold axis running along the mid-points of the $\mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 13-$ C14 bonds.

There is one weak intermolecular $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 3^{\mathrm{i}}$ hydrogen bond (see Table 2 for details).

Experimental

N-(hydroxyethyl)aniline ($5.48 \mathrm{~g}, 40 \mathrm{mmol}$) was dissolved in dry DMSO (150 ml) under nitrogen and 1,2-dichloro-4,5-dicyanobenzene ($3.94 \mathrm{~g}, 20 \mathrm{mmol}$) was added. After stirring for 10 min at 353 K , finely ground anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 320 \mathrm{mmol})$ was added portionwise over 2 h with vigorous stirring. After stirring for 8 h at 353 K , the reaction mixture was poured into ice-water (250 g). The precipitate was filtered off, washed with water to remove inorganic residues, and recrystallized from ethanol (yield: $1.2 \mathrm{~g}, 42 \%$). The compound is soluble in ethanol, ethyl acetate, chloroform, DMSO and DMF. IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 3080-2860 (Ar-H and CH), $2225(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.6-6.4(7 \mathrm{H}, m, \mathrm{Ar}), 3.8-3.1\left(4 \mathrm{H}, m, \mathrm{CH}_{2}\right)$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=261.28 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=14.3699(14) \AA \\
& b=7.5806(4) \AA \\
& c=13.1208(14) \AA \\
& \beta=114.879(7)^{\circ} \\
& V=1296.6(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe IPDS-2 diffractometer

ω scans

Absorption correction: by
integration (X-RED 32 ;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.980, T_{\text {max }}=0.993$
15978 measured reflections
$D_{x}=1.338 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8295
\quad reflections
$\theta=1.7-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.35 \times 0.22 \times 0.10 \mathrm{~mm}$

2264 independent reflections
1449 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 17$
$k=-8 \rightarrow 8$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.098$
$S=0.91$
2264 reflections
226 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.059 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.025 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \text { Extinction coefficient: } 0.031(4)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 14-\mathrm{O} 1$	$1.434(3)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.403(3)$
$\mathrm{C} 14-\mathrm{C} 13$	$1.486(4)$	$\mathrm{C} 15-\mathrm{N} 2$	$1.154(3)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.360(2)$	$\mathrm{C} 9-\mathrm{C} 16$	$1.388(2)$
$\mathrm{C} 6-\mathrm{N} 1$	$1.416(3)$	$\mathrm{C} 16-\mathrm{N} 3$	$1.163(3)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.465(3)$		
			$119.27(17)$
$\mathrm{C} 12-\mathrm{O} 1-\mathrm{C} 14$	$115.36(18)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 13$	$120.55(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$124.51(18)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$119.02(17)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 13$	$116.16(18)$	$\mathrm{C} 16-\mathrm{C} 9-\mathrm{C} 10$	
			$133.2(2)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 11$	$-167.9(2)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$19.4(3)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 7$	$14.0(3)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	

Figure 2
PLUTON plot (Spek, 1997), viewed down the b axis, showing part of the stacking of molecules.

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.94(2)$	$2.52(2)$	$3.425(3)$	$163(2)$

Symmetry code: (i) $x, 1+y, z$.
The H atoms were refined isotropically. Refined distances: $\mathrm{CH}=$ 0.94 (2) -1.02 (3) \AA and $\mathrm{CH}_{2}=0.96$ (3) -1.05 (3) \AA. The $U_{\text {iso }}$ values for the H atoms were in the range $0.055(5)-0.104(10) \AA^{2}$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED 32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLUTON (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chen, Y., Zhang, L. \& Chen, Z. (2003). Acta Cryst. E59, m429-m430.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271383.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Işık, Ş., Öztürk, S., Fun, H.-K., Ağar, E. \& Şaşmaz, S. (1999). Acta Cryst. C55, 1850-1852.
Karadayı, N., Akdemir, N., Ağar, E., Gümrükçüoğlu, I. E. \& Büyükgüngör, O. (2003). Acta Cryst. E59, o945-o946.

Leznoff, C. C. \& Lever, A. B. P. (1996). Phthalocyanines: Properties and Applications, Vols. 1-4. Weinheim: VCH.
Moser, F. H. \& Thomas, A. L. (1983). The Phthalocyanines. Boca Raton, Florida: CRC Press.
Olmstead, M. M., Troeltzsch, C. \& Pattern, T. E. (2003). Acta Cryst. E59, m502-m503.
Öztürk, S., Işık, Ş., Akkurt, M., Ağar, E., Şaşmaz, S. \& Fun, H.-K. (2000). Anal. Sci. 16, 663-664.
Öztürk, S., Işık, Ş., Fun, H.-K., Kendi, E., Ağar, E., Şaşmaz, S. \& Ibrahim, A. R. (1999). Acta Cryst. C55, 395-397.

organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (1997). PLUTON. Version of May 1997. University of Utrecht, The Netherlands.

Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Vergeer, P., Kooijman, H., Schreurs, A. M. M., Kroon, J. \& Grech, E. (1999). Acta Cryst. C55, 1822-1824.

